Ac 2012-4835: Hard Core vs. Soft Core: a Debate
نویسنده
چکیده
Antonio F. Mondragon-Torres received a B.Sc. degree with honors from Universidad Iberoamericana, Mexico City, Mexico, a M.Sc. degree from Universidad Nacional Autonoma de Mexico, Mexico City, Mexico, and a Ph.D. degree (as a Fullbright-CONACYT scholarship recipient) from Texas A&M University, College Station; all degrees in electrical engineering in 1990, 1996, and 2002, respectively. From 1988 to 1995, he worked in a telecommunications company TVSCOM, Mexico City, Mexico, designing teletext products, first as a Design Engineer and later as a Design Manager. In 1995, he joined the Mechanical and Electrical Department, Universidad Iberoamericana, as an Associate Professor. From 2002 through 2008, he was with the DSPS R&D Center’s Mobile Wireless Communications Technology branch, Texas Instruments Dallas, Texas, and in 2008, he moved to the nanoMeter Analog Integration Wireless branch, where he worked as Analog IP verification technical lead. In 2009, he worked for Intel Guadalajara, Design Center in Mexico as Front-End/Back-End Technical Lead. In 2009, he joined the Electrical, Computer, and Telecommunications Engineering Technology Department at the Rochester Institute of technology, where he currently is a tenure-track Assistant Professor. His research interests include analog and digital integrated circuit implementation of communications systems and system-ona-chip methodologies.
منابع مشابه
Analysis of Laminated Soft Core Sandwich Plate Having Interfacial Imperfections by an Efficient C0 FE Model
An efficient C0 continuous two dimensional (2D) finite element (FE) model is developed based on a refined higher order shear deformation theory (RHSDT) for the static analysis of soft core sandwich plate having imperfections at the layer interfaces. In this (RHSDT) theory, the in-plane displacement field for the face sheets and the core is obtained by superposing a globally varying cubic displa...
متن کاملStrongly exchange coupled inverse ferrimagnetic soft/hard, Mn(x)Fe(3-x)O4/Fe(x)Mn(3-x)O4, core/shell heterostructured nanoparticles.
Inverted soft/hard, in contrast to conventional hard/soft, bi-magnetic core/shell nanoparticles of Mn(x)Fe(3-x)O(4)/Fe(x)Mn(3-x)O(4) with two different core sizes (7.5 and 11.5 nm) and fixed shell thickness (∼0.6 nm) have been synthesized. The structural characterization suggests that the particles have an interface with a graded composition. The magnetic characterization confirms the inverted ...
متن کاملAthermal Jamming vs Thermalized Glassiness in Sheared Frictionless Particles
Numerical simulations of soft-core frictionless disks in two dimensions are carried out to study behavior of a simple liquid as a function of thermal temperature T , packing fraction φ, and uniform applied shear strain rate γ̇. Inferring the hard-core limit from our soft-core results, we find that it depends on the two parameters φ and T/γ̇. T/γ̇ → 0 defines the athermal limit in which a shear dri...
متن کاملHerschel-Bulkley shearing rheology near the athermal jamming transition.
We consider the rheology of soft-core frictionless disks in two dimensions in the neighborhood of the athermal jamming transition. From numerical simulations of bidisperse, overdamped particles, we argue that the divergence of the viscosity below jamming is characteristic of the hard-core limit, independent of the particular soft-core interaction. We develop a mapping from soft-core to hard-cor...
متن کاملA Hard Convex Core Yukawa Equation of State for Nonassociated Chain Molecules
The compressibility factor of nonassociated chain molecules composed of hard convex core Yukawa segments was derived with SAFT-VR and an extension of the Barker-Henderson perturbation theory for convex bodies. The temperature-dependent chain and dispersion compressibility factors were derived using the Yukawa potential. The effects of temperature, packing fraction, and segment number on the com...
متن کامل